Examination Control Division 2081 Baishakh | Exam. | | Back | | |-------------|--------|------------|--------| | Level | BE | Full Marks | 80 | | Programme | BCT | Pass Marks | 32 | | Year / Part | II / I | Time | 3 hrs. | ### Subject: - Theory of Computation (CT 502) - Candidates are required to give their answers in their own words as far as practicable. - ✓ Attempt All questions. - ✓ The figures in the margin indicate Full Marks. - ✓ Assume suitable data if necessary. [7] - 1. State and prove the pigeonhole principle. Prove the following statement by using mathematical induction: $1 \times 1! + 2 \times 2! + 3 \times 3! + \dots + n \times n! = (n+1)! 1$ for n > 1. [3+4] - 2. Formally define Deterministic Finite Automata (DFA). Design a DFA that accepts the strings over an alphabet $\Sigma = \{a, b\}$ that does not contain three consecutive b's [2+5] - 3. List the closure properties of regular language. Prove that regular languages are closed under union, concatenation and kleene star operations. [2+6] - 4. Convert the following NFA into its equivalent DFA. [7] - 5. Define Context Free Grammar (GFG). Write a CFG for the regular expression $R = a+(a\times a)$. - 6. Define Chomsky Normal Form (CNF). Convert the following CFG into CNF. [2+5] G = (V, T, R, S) where $V = \{S, A, a, b\}$, $T = \{a, b\}$ and $R = \{S \rightarrow aAB | AaB | B, aB B$ $A \rightarrow aA|e, B \rightarrow ab|bA$ S = Start Symbol Here, e is the empty symbol. - 7. Define Push Down Automata. Design a PDA that accepts the language $L = \{a^nb^mc^md^n: m, n > -1\}$ and check it for string abcd and aabbbcccdd. [1+6] - 8. Design a single tape deterministic Turing Machine which reverses the given string w over an alphabet $\Sigma = \{a,b\}$. - 9. Define unrestricted grammar. Design a TM that perform f(n) = 0. [2+4] - 10. Describe the structure of different types of grammar as defined by Chomsky Hierarchy. [4] - 11. State Church Turing Thesis. What are recursive and recursively enumerable languages? [2+3] - 12. What is Universal Turing Machine? Define Halting problems. [2+2] - 13. Explain P and NP class of problems. [2+2] *** ## Examination Control Division 2080 Bhadra | Exam. | Regular | | | |-------------|---------|------------|--------| | Level | BE | Full Marks | 80 | | Programme | BCT | Pass Marks | 32 | | Year / Part | II / I | Time | 3 hrs. | ### **Subject**: - Theory of Computation (CT 502) - ✓ Candidates are required to give their answers in their own words as far as practicable. - ✓ Attempt All questions. - ✓ The figures in the margin indicate Full Marks. - ✓ Assume suitable data if necessary. [2+5] - State Diagonalization principle. Write a Regular expression for the language accepting the string starting and ending with different symbol over an ∑ = {a, b}. [1+2] - 2. Define countably infinite and uncountable sets with example. Use the principle of mathematical induction to prove $5^n 1$ is divisible by 4 for all integer n > 0. [2+3] - 3. What is the significance of finite automata? Construct DFA, which accepts set of all strings over {0, 1} which interpreted as binary number is divisible by 3. Verify your design using suitable example. [2+5] - 4. What do you mean by E transition in Nondeterministic Finite Automata? Find the equivalent DFA of following NFA. [2+5] - 5. State pumping lemma for regular language. Show that the language $L = a^n b^{2n}$ for $n \ge 1$ is not regular. [2+5] - 6. Define Context free Grammer. Construct CFG for the language $L = \{w: w \text{ contains odd length over an alphabet } \{0,1\}\}$. Also show the left most and right most derivations for the string "ababaab" - 7. Define ambiguity in Grammer. Convert the following CFG into CNF with explanation of each steps G = (V, T, R, S) where $V = \{S, A, B\}$, $T = \{a, b\}$, $R = \{S-->ASB/\epsilon, A-->aAS/a, B-->AB/b/\epsilon\}$ [2+5] - 8. Design a push down automata (PDA) to accept the language L = { wcw^R : w is the string over {a, b}* and W^R is the reverse of w}. Check your design for string "abcba". [7] - 9. Design a Turing Machine that accepts all the palindrome of strings over alphabet {a, b} and perform the test for string. [7] - 10. Explain how unrestricted grammar can be used to generate the language $= a^n b^n c^n for \, n > 0.$ [5] - 11. Explain configuration and working of multi-tape Turing Machine. [5] - 12. What do you mean by Church Turing Thesis? Describe the working mechanism of Universal Turing Machine with example. [2+7] - 13. What is computational complexity? Explain NP-complete problems with example. [2+2] #### Examination Control Division 2080 Baishakh | Exam. | Back | | | |-------------|--------|------------|--------| | Level | BE | Full Marks | 80 | | Programme | BCT | Pass Marks | 32 | | Year / Part | II / I | Time | 3 hrs. | #### Subject: - Theory of Computation (CT 502) - ✓ Candidates are required to give their answers in their own words as far as practicable. - ✓ Attempt All questions. - ✓ The figures in the margin indicate *Full Marks*. - Assume suitable data if necessary. - 2. Define finite state Automata with its block diagram. Design a deterministic finite automata accepting string over{a,b} containing either 'ab' or 'bba' as substring. [2+5] - 3. Convert the following e-NFA into DFA. [7] 4. How can you check the equivalence of two DFAs? Minimize the DFA represented by following Transition Table: | Q^{\sum} | а | ь | |-------------|----|----| | → q0 | q3 | q1 | | q1 | q3 | q2 | | q2 | q4 | q1 | | *q3 | q4 | q3 | | *q4 | q4 | q4 | | q5 | q4 | q2 | Here, \rightarrow represents starting state and \ast represents final states. | 5. | Formally define CFG. Construct a Context Free Grammar for the language | | |-----|---|-------| | | $L = \{a^m b^n : m, n \ge 1, m > n\}$ over the alphabet $\Sigma = \{a,b\}$. Derive string "aaabb" by using | | | | both left most and sight-most derivation and draw parse tree for the same. | [7] | | 6. | Given the following expression grammar for simple arithmetic expression with operator + and*. | (1) | | | $E \rightarrow E + T/T$ | | | | $T \rightarrow T \times F/F$ | | | | $F \rightarrow (E)/a$ | | | | Remove the Left Recursion from this grammar and simplify it and convert it to CNF. | [3+4] | | 7. | Describe the operation of pushdown automata. Design a PDA for language $L=\{w \ c \ w^R: w \in \{a,b\}^*\}$ and check your design for string $\omega=abacaba$. | [2+5] | | 8. | Design a Turing Machine that reverse a string over {a,b}. Test your design for string aaba. | [7] | | 9. | How a Turing Machine performs the computing function? Design a Turing Machine that | [,] | | | computes the function $f(x) = x + 2$ for each x belonging to set of natural number. | [2+5] | | 10. | State Church Turing thesis. What is a recursive language? Explain how Turing Machine works as Enumerator. [2] | +2+3] | | 11. | What is Universal Turing Machine? Explain Turing recognizable and Turing decidable languages. | | | 12 | | [3+1 | | 12. | Explain class P and NP Problems with examples. | [4] | | | | | *** ### **Examination Control Division** 2079 Bhadra Complete. | Exam. | | Regular | | |-------------|--------|------------|--------| | Level | BE | Full Marks | 80 | | Programme | BCT | Pass Marks | 32 | | Year / Part | II / I | Time | 3 hrs. | [4] | *************************************** | Subject: - Theory of Computation (CT 502) | | |---|---|------------| | ✓ ✓ ✓ ✓ ✓ | candidates are required to give their answers in their own words as far as practicable. | | | 1. | What are regular expressions? Write a regular expression for the language. $L = \{w \in \{a, b\}^*: w \text{ has even number of 'a's followed by odd number of 'b's}\}$. Prove by mathematical induction that $n < 2^n$ for all positive integers n. | [+2+4] | | 2. | Why is NDFA important although it is equivalent to a DFA? Design a DFA that accepts the language given by $L = \{w \in \{0, 1\}^*: w \text{ has neither '00' nor '11' as substring}\}$. Hence test your design for 01011010. | [2+5] | | 3. | Convert following Regular Expression to NFA and then to DFA.
$L = b(baa \cup aba)^*$ | [7] | | 4. | State pumping lemma for regular languages. Use it to show $L = \{a^{n!} : n > 0\}$ is not regular. | [2+5] | | 5. | What are inherent ambiguity in grammar? Write a CFG for following language.
$L = \{ w \in 0, 1, 2 \}^* : W = 0^i 1^j 2^k \text{ such that } i = j \text{ or } j = k \}.$ | [2+5] | | 6. | Convert following CFG into CNF with explanation of each steps. $G = (V, \Sigma, R, S)$, where $V = \{S, A, B, a, b\}$, $\Sigma = \{a, b\}$ $R = \{S \rightarrow aBb \mid A, A \rightarrow aB \mid bA \mid AB \mid e, B \rightarrow aB\}$ | | | 7. | | [7]
[7] | | 8. | Construct a Turing machine to transform $\sqcup \omega \underline{\sqcup}$ into $\sqcup \omega \sqcup \omega$ where ω is a string with no blanks and \sqcup represents a blank symbol. | [7] | | 9. | Design a Turing machine that decreases any binary strings by one with $\Sigma = \{0, 1, \#, \triangleright\}$, where \triangleright is left end symbol and $\#$ is the Blank Symbol. Hence test your design for $\triangleright \#100\#$ to $\triangleright \#011\#$. | [7] | | 10. | . What is a universal Turing machine? Explain with example. What is Church Turing thesis? | [7] | | 11. | State Church Turing Thesis. Prove that if L and its complement are both Recursively Enumerable, then L is recursive. | [3+3] | 12. What do you mean by Halting Problem? Explain about complexity classes P, NP and NP # Examination Control Division 2078 Kartik | Exam. | | Back | | |-------------|--------|------------|--------| | Level | BE | Full Marks | 80 | | Programme | BCT | Pass Marks | 32 | | Year / Part | II / I | Time | 3 hrs. | ### Subject: - Theory of Computation (CT 502) - ✓ Candidates are required to give their answers in their own words as far as practicable. - ✓ Attempt <u>All</u> questions. - ✓ The figures in the margin indicate *Full Marks*. - ✓ Assume suitable data if necessary. [3] [4] [2+5] [2+5] [7] - 1. a) Write a regular expression for the set of strings over {0, 1} with exactly two 0's. - b) Explain equivalence relations and partial order relations with examples of each. - 2. What is configuration of DFA? Design a DFA which accepts the strings of the language defined by the regular expression $R = (01 \cup 010)^*$. - 3. How can you prove that some languages are not regular? Prove that the set of regular languages are closed under complementation and intersection operations. [2+5] - 4. Define e-NFA formally. Convert the following e-NFA to equivalent DFA. [1+6] - 5. Design a Pushdown Automata (PDA) which accepts all the language L= {a^mbⁿc^{3m}:m, n>0}. Check your design for string 'abbccc'. [5+2] - 6. What are the decision properties of context free language? Prove that context free languages are closed under union and concatenation operation. [3+4] - 7. What is ambiguity in CFG? Design a CFG that generates the strings belongs to the language L = {wcw^R: w is the string of alphabets {a, b} and w^R is the reverse of w}. Verify your design by deriving string abbcbba. - 8. A single tape Turning Machine consist of sequence of 0's and 1's, design a single tape deterministic Turing Machine which counts numbers of 1s in the given tape. If it contains even number of 1s then it replaces each occurrence of 1 s by 0s and otherwise it should replace each occurrence of 0s by 1s and halts. - E.g. if input string in tape is #10111# then output should be #00000#, if input string in tape is #11001# then output should be #11111# - 9. What is primitive recursive function? How Turing Machine can be used to describe Zero function and Successor function as defined in initial functions? Explain with proper example. - 10. Describe working mechanism of Multi-tape Turing machine. How it differs from multiple head Turing machine? [3+2] - 11. How Universal Turing Machine (UTM) is different from Standard Turing machine? How Universal Turing machine works? Explain with proper example. [1+4] - 12. What is undecidability? Describe recursive and recursively enumerable language with suitable examples of each. - 13. What is complexity theory? Why it is important to deal with computational problems? Explain NP-Complete problems with suitable examples. [2+3] [4] # Examination Control Division 2078 Bhadra | Exam. | | Regular | | |-------------|--------|------------|--------| | Level | BE | Full Marks | 80 | | Programme | BCT | Pass Marks | 32 | | Year / Part | II / I | Time | 3 hrs. | ### Subject: - Theory of Computation (CT 502) ✓ Candidates are required to give their answers in their own words as far as practicable. ✓ Attempt All questions. ✓ The figures in the margin indicate Full Marks. ✓ Assume suitable data if necessary. 1. a) Write regular expressions for the language which generates strings of even length over the alphabet $\Sigma = \{a, b\}$. [3] b) Define Induction Principle. Explain Pigeonhole principle with suitable example. [1+3]2. Design a DFA that accepts a language $L(M) = \{w \in \{0, 1\}^*: Every 0 \text{ in } w \text{ has } 1\}$ immediately to its right. Test your design for 0010111, 1011010111 and also show the steps involved. [7] 3. State the pumping for regular languages. Use pumping lemma for regular languages to show the Language $L = \{a^{n!} : n > 0\}$ is not regular. [2+5] 4. List closure properties of regular language. Show that regular languages are closed under intersection. [2+5]5. Design a Pushdown Automata (PDA) which accepts all the strings for the language $L = \{a^n b^m a^{n+m} : n, m > 0\}$. Check your design for the string "aabbbaaaaa". [2+5]6. Convert following CFG into CNF with explanation of each steps. $G = (V, \Sigma, R, S)$, where $V = \{S, A, B, a, b\},\$ $\sum = \{a, b\},\$ $R = \{S \rightarrow ASA \mid aB, A \rightarrow B \mid S, B \rightarrow b \mid \epsilon\}.$ [7] 7. Design a Context Free Grammar for the language $L = \{a^i b^j c^k \mid i, j, k \ge 0 \text{ and } i + j = k\}$. Derive the string "aabccc" and also draw parse tree for the same. [7] 8. Design a Turing machine that takes binary numbers as input and computes l's complement operation. Hence test your design for #100# to #011#. [7] 9. Describe the working of a Turing Machine along with a block diagram. How can we represent configuration of a Turing Machine? State and explain with example Rules for Combining Turing Machine. [3+2+5]10. Explain undecidable problems about Turing machine and grammar. Show that complement of recursive language is recursive. [3+4]11. Explain about Halting problem with example. [3] 12. Explain about class-NP problems with examples. [4] #### **Examination Control Division** 2076 Chaitra | Exam. | | Regular | | |-------------|--------|------------|--------| | Level | BE | Full Marks | 80 | | Programme | BCT | Pass Marks | 32 | | Year / Part | II / I | Time | 3 hrs. | [2+5] ### Subject: - Theory of Computation (CT 502) - ✓ Candidates are required to give their answers in their own words as far as practicable. - ✓ Attempt All questions. - ✓ The figures in the margin indicate *Full Marks*. - ✓ Assume suitable data if necessary. - 1. Formally define regular expressions. Explain the diagonalization principle with an example. - 2. Distinguish between deterministic and non-deterministic finite automata. Design a DFA with $\Sigma = \{0, 1\}$ which accepts the strings with an even number of 0's followed by a single [2+5] - 3. Construct an NDFA for the language (ba)*U(bab)*. Convert the NDFA into a DFA. [2+5] - 4. Define what is a closure property. Prove that regular languages are closed under union, concatenation and kleene star operation. [1+6] - 5. Explain ambiguity in CFG with example. Write the CFG for the language $L = \{a^i b^j c^k : i=j\}$ or j=k}. Generate the strings a³ b⁴ c⁴ using your grammar. [3+4] - 6. Define Chomsky Normal Form. [1+6] Convert the following CFG into CNF. - $G = (V, \Sigma, R, S)$ where - $V = \{S, X, Y\}$ - $\Sigma = \{a, b, c\}$ - R given by - $S \rightarrow aXbX$ - X→aY |bY |ε - $Y \rightarrow X \mid c$ - 7. Differentiate between Finite Automata and Pushdown Automata. Design a PDA which accepts all the strings of languages $L = \{a^n b c^{2n} : n > 1\}$. [2+5] - 8. Design a single tape deterministic Turing Machine that accepts $L = \{wcw^R : w \in \{0, 1\}^* \text{ and c is single 0 or 1 or e (empty string)}.$ [7] - 9. Compare Turing machine with PDA and FA. Explain Chomsky hierarchy of language with suitable diagram and examples. [4+4] - 10. Define the term Turing Decidable. Show that Union and Intersection of two recursive languages is recursive. [3+5] - 11. What is the significance of a Universal Turing Machine? Explain its working mechanism. [2+3] - 12. Explain NP-complete problems with example. [3] ### **Examination Control Division** 2076 Ashwin | Exam. | | Rank | N. W. HOLL | |-------------|-----|------------|------------| | Level | BE | Full Marks | 80 | | Programme | BCT | Pass Marks | 32 | | Year / Part | П/I | Time | 3 hrs. | ### Subject: - Theory of Computation (CT 502) - Candidates are required to give their answers in their own words as far as practicable. - ✓ Attempt <u>All</u> questions. - The figures in the margin indicate Full Marks. - ✓ Assume suitable data if necessary. - 1. Determine Regular Expression for the following Language $L=\{w\in\{a,b\}^*: w \text{ contains } a,b\}$ at-least one 'a' OR at-least one 'b' }. - 2. Prove by using Principle of Mathematical Indication: $$1+2+3+...+n=\frac{n^2+n}{2}$$; for n≥0 - 3. Define configuration of DFA. Design a DFA that accepts the language $L=\{w\in\{a,b\}: w\in\{a,b\}\}$ has neither 11 nor 00 as substring}. - 4. Convert following NDFA to DFA. - 5. State pumping lemma for regular language. Show that $L=\{a^nba^n:n>0\}$ is not regular. - 6. Construct CFG for following language: $L=\{ww^R: w \in \{a, b\}^*\}$ - Also, use the grammar to derive the string "abba" and draw parse tree for it. - 7. Define Chomsky Normal Form. Convert the following CFG into CNF. G= (V, Σ ,R,S) where V={S, A, B, a, b}, Σ ={a, b}, R given by $s \rightarrow AB$ $A \rightarrow aAA/e$ B→bBB/e 8. Design PDA for following language: $L=\{a^{2n}b^{3n}: n \ge 0\}$ Also test your design for "aabbb". 9. Explain a multi-tape Turning Machine. Design a single tape deterministic Turing - Machine which accepts the given string w over alphabet $\Sigma = \{a, b, c\}$ and w contain equal number of a, b, c. - [2+5]10. Differentiate between Context Free and Unrestricted Grammars. Design a Turing Machine that replaces symbol 'a' with 'b' and 'b' with 'a' for any string $w \in \{a, b\}^*$. Show the processing of machine (configuration transition) for string "ababa". - 11. What do you mean by Church Turing thesis? Show that the union of two recursively enumerable languages is recursively enumerable. - 12. What is "Halting Problem"? How can you prove that it is unsolvable? - 13. Define polynomial time reduction. Explain P and NP problems with examples. [1+4] [2] [5] [2+5] [7] [2+5] [7] [2+5] [7] [2+5] [3+4] [5] # Examination Control Division 2075 Chaitra | Exom. | | ULEN VIBRIAR | And the second second | |-------------|--------|--------------|-----------------------| | Level | BE | Full Marks | 80 | | Programme | BCT | Pass Marks | 32 | | Year / Part | II / I | Time | 3 hrs. | | | Subject: - Theory of Computation (CT 502) | | |---------|---|--------------| | ✓ ✓ ✓ ✓ | Attempt <u>All</u> questions. The figures in the margin indicate <u>Full Marks</u> . | | | 1. | Define Regular Language. Write regular expressions for the language in which strings start and end with same symbol over alphabet $\Sigma = \{a,b\}$. | [3] | | 2. | Explain Diagonalization principle with suitable example. | [4] | | 3. | Design DFA for following Language $L = \{w : w \in \{a,b\}^*, w \text{ has even number of 'a' and odd number of 'b' }\}$. Also Test your design for "aabbb". | | | 4. | Construct NFA an convert it to its corresponding DFA for the language represented by following Regular Expression: (ab U bb)*a | _ | | 5. | What is the application of pumping lemma? Use pumping lemma for regular languages to show the language $L=\{a^p: p \text{ is prime}\}$ is not regular. | [2+5] | | 6. | Write a context free grammer for he language $L=\{w\epsilon\{a,b\}^*: w \text{ has equal number of a's and b's}\}$. Use leftmost and rightmost derivation to generate strings "aababb". Also draw parse tree for the same. | [7] | | 7. | Define Ambiguous Grammer with example. Convert the following CFG into CNF with explanation of each step. $G = \{V, \Sigma, R, S\}$ where $V = \{S, A, a,b\}$ is set of variables $\Sigma = \{a,b\}$ is the Alphabet of terminals $R = \{S \rightarrow aAb bAa e, A \rightarrow SS\}$; Note: e donates "Empty String" S is Starting State | [2+5] | | 8. | Design a PDA which accepts all the strings of language $L=\{a^nb^mc^md^n: n,m>0\}$. | [7] | | | Design a Turing Machine that recongnizes the string of matched parenthesis. Also, test your design for "(())()" showing all configurations. | [7]
[5+2] | | 10. | Explain how unrestricted grammar can be used to generate the language $L = \{a^nb^nc^n : n > 0\}$. Describe the structure of different types of grammars as defined by Chomsky Hierarchy. | [5+2] | | 11. | Define Church Turing Thesis. Why is it called a thesis? | [2+1] | | 12. | Define Recursive and Recursively enumerable Languages. Prove that the complement of recursive language is also recursive. | [2+2] | | 13. | Describe the working mechanism of Universal Turing machine with example. | [5] | | 14. | Define computational complexity and polynomial Time Reduction. Explain Class NP- | - 1 | [2+3] Problems. # Examination Control Division 2075 Ashwin reduction. | Exam. | | Back | | |-------------|------|------------|--------| | Level | BE | Full Marks | 80 | | Programme | BCT | Pass Marks | 32 | | Year / Part | II/I | Time | 3 hrs. | ### Subject: - Theory of Computation (CT502) | V V V | The figures in the margin indicate Full Marks. | | |-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------| | 1. | a) Write a regular expression for the language in which strings start and end with different symbol over alphabet $\sum = \{a, b\}$. | [3] | | | b) Define Diagonalization Principle. Explain Principle of mathematical induction with suitable example. | [1+3] | | 2. | What are the components of finite automata? Design a DFA that accepts the strings given by $L = \{w \in \{a, b\}^*: w \text{ has number of a divisible by 3 and number of b by 2}\}.$ | [1+6] | | 3. | List closure properties of regular language. If M and N are any two regular languages then show that $L = (M \cup N)$ is also regular language. | [2+5] | | 4. | Write the statement of Pumping lemma for regular languages. Show that $L = \{a^n b^n, n > 0\}$ is not a regular language by using pumping lemma. | [3+4] | | 5. | Write Context Free Grammar for the Language $L = \{a^i b^j c^i : i, j > 0\}$ over the alphabet $\sum = \{a, b, c\}$. Use Leftmost, rightmost derivation to generate strings "aabbbcc". Also draw parse tree for the same. | [7] | | 6. | Convert following CFG into CNF with explanation of each steps. $G = (V, \Sigma, R, S)$, where $V = \{S, X, Y, a, b, c\}$, $\Sigma = \{a, b, c\},$ $R = \{S \rightarrow aXbX, X \rightarrow aY bY XY \in Y \rightarrow aX c\}.$ | [7] | | 7. | What is additional feature PDA has when compared with finite automata? Explain. Design a Pushdown Automata (PDA) which accepts all the strings of language $L = \left\{ a^n b^m c^{2n}; n, m > 0 \right\}$. | [2+5] | | 8. | Design a Turing machine that increments any binary strings by one with $\sum = \{0,1,\#\}$. | | | | Hence test your design for ##11# to #100#. | [7] | | 9. | How multi-tape Turing machine is different from multi-track Turing Machine? Does any variation of Turing machine have more computational power than standard Turing machine? Explain. | [2+5] | | 10 | . Describe in detail about on universal Turing machines with example. | [5] | | 11 | . Explain the Church Turing thesis. Show that the "halting problem" is undecidable. | [3+4] | | 12 | . Explain NP hard and NP-Complete Problems with reference to polynomial time | | [5] # Examination Control Division 2074 Chaitra | Exam. | | Regular | | |-------------|--------|------------|--------| | Level | BE | Full Marks | 80 | | Programme | BCT | Pass Marks | 32 | | Year / Part | II / I | Time | 3 hrs. | ### Subject: - Theory of Computation (CT502) - ✓ Candidates are required to give their answers in their own words as far as practicable. - ✓ Attempt All questions. - ✓ The figures in the margin indicate Full Marks. - ✓ Assume suitable data if necessary. - 1. What are regular expressions? Find the equivalence classes for the set $N = \{1, 2, 3, 4, 5, ...\}$ corresponding to the equivalence relation $R = \{(a, b): (a+b) \text{ is even number}\}$. [2+5] - 2. Explain finite automata with their application. Design a DFA that accepts the language $L = \{ w \in \{a, b\} : w \text{ must have either aaa or bbb as a substring} \}.$ [2+5] - 3. Convert the following NFA into it's equivalent DFA. [7] - 4. State the pumping lemma for the regular languages. Show that the Language $L = \{0^{n^2} \mid n > 1\}$ not regular e.g. if n = 1, w = 0, n = 2, w = 0000. n = 3, w = 000000000 [2+5] - 5. Define context free Grammar (CFG). Show that $L = \{a^nb^{2n}c^{3n} : n > 0\}$ is not context free language by using Pumping lemma for CFL. [2+5] - 6. Convert the following CFG into CNF. G = {V, T, P, S} [7] Where, $V = \{S, A, B, C, a, b, c\}$ $T = \{a, b, c\}$ $P = \{S \rightarrow ABA \mid ab \mid A \mid BC, A \rightarrow aA \mid \epsilon, B \rightarrow baB \mid c, C \rightarrow aC\}$ - 7. Design a push down automaton (PDA) for $L = \{a^n \ b^{2n} : n \ge 1\}$. Hence test for "aaabbb" and "aabbbb". [5+2] - 8. Define Turing Machine. Design a single tape deterministic Turing Machine which reverses the given string w, over alphabet $\Sigma = \{a, b\}$. [2+5] - 9. Explain how unrestricted grammar can be used to generate the language $L = \{a^nb^nc^n : n > 0\}$. Is there any difference between CFG and Unrestricted grammar? Explain [4+2] - 10. Explain encoding technique of universal Turing machine. Show that complement of recursive language is recursive. [5+4] - 11. What do you mean by Church-Turing Thesis? State when a problem is said to be decidable and give an example of an undecidable problem. [2+2] - 12 E-mlain D and MD along of problems ### Examination Control Division 2074 Ashwin | Exam. | | Back | | |--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|------------|--------| | Level | BE | Full Marks | 80 | | Programme | BCT | Pass Marks | 32 | | ATTENDED TO THE PERSON NAMED IN COLUMN TWO IS NOT I | II / I | Time | 3 hrs. | ### Subject: - Theory of Computation (CT502) ✓ Candidates are required to give their answers in their own words as far as practicable. ✓ Attempt All questions. ✓ The figures in the margin indicate Full Marks. ✓ Assume suitable data if necessary. - 1. State the diagonalizable principle. Use principle of mathematical induction principle to prove $n^4 4n^2$ is divisible by 3 for $n \ge 0$. [3+4] - What is the significance of finite automata? Design a DFA that accepts the strings over an alphabet \(\sum_{=}^{2} \{0,1\}\) that either start with 01 or end with 01. Hence test your design for any two strings. - 3. Differentiate between DFA and NDFA. Convert the following NDFA to its DFA. [2+5] - 4. Define Closure properties of Regular Language. Prove that regular Language are closed under Union, Intersection and Complementation operation. [1+6] - 5. Define pumping lemma for context free language. Prove that language $L = \left\{ WW \middle| W \in \left\{1,0\right\}^{\bullet} \right\} \text{ is not context free.}$ [2+5] - 6. Convert following CFG into CNF with explanation of each steps. $G=(V,\Sigma,R.S)$, where [7] $V = \{S,A,B,a,b\},\$ $\Sigma = \{a,b\}$ $R = \{S \rightarrow ASB | \epsilon, A \rightarrow aAS | a, B \rightarrow AB | b | \epsilon \}.$ - 7. Mention role of parse tree in context free grammar. Design a PDA that accepts $L = \{a^n b^{2n+1}, n > 0\}$ and check it for string aabbbbb. [2+5] - Design a single tape deterministic Turing machine which accepts all strings defined for the language L = {aⁿcbⁿ : n ≥ 0} over alphabet ∑ = {a,b,c}. - 9. Design a multi-tape Turing machine which act as Copying machine over the alphabets $\sum = \{0,1\}$ that transforms string of the form "#10#" into "#10#10#". [5] | 10. Define unrestricted grammar. Explain possible extensions of Turing machine in brief. | [1+6] | |-----------------------------------------------------------------------------------------------------------------------|-------| | 11. What is universal Turing machine? How Universal Turing machine works? Explain. | [5] | | 12. Explain Halting problem. Is it solvable problem? Discuss. | [4] | | 13. What are two factors affecting the computational complexity of a problem? Explain class NP with suitable example. | [1+4] | *** V. ### Examination Control Division 2073 Shrawan | Exam. | New Back (2066 & Later Batch) | | | |-------------|-------------------------------|------------|--------| | Level | BE | Full Marks | 80 | | Programme | BCT | Pass Marks | 32 | | Year / Part | II/I | Time | 3 hrs. | ### Subject: - Theory of Computation (CT502) ✓ Candidates are required to give their answers in their own words as far as practicable. ✓ Attempt All questions. ✓ The figures in the margin indicate Full Marks. ✓ Assume suitable data if necessary. 1. State pigeonhole principle. Prove the following statement by using mathematical induction: $1 \times 1! + 2 \times 2! + 3 \times 3! + \dots + n \times n! = (n+1)! - 1$ where $(n \ge 1)$. [2+5]2. Define Configuration of DFA. Design a Deterministic Finite Automata (DFA) for language $L = \{w \in \{0,1\} : w \text{ has both } 01 \text{ and } 10 \text{ as substrings} \}$. Verify your design by taking [2+5] one accepted and one rejected strings. 3. Construct a NFA for the language (ab*a U b*aa). Provide any two accepted strings and [7] two rejected strings. 4. State pumping lemma for regular language and use this theorem to prove that $L = \{a^nb^{2n} : n \ge 1\}$ is not regular. [7] 5. Construct a PDA which accepts the language $L = \{a^n b^{n+m} c^m : n, m \ge 1\}$. Verify your design by taking s string "abbbcc" as example. [7] 6. What is Chomsky? Normal Form (CNF)? $\{S, L, M, N, a, b, c\}$, $\sum = \{a, b, c\}$, $R = \{S \rightarrow MaN|bL|bM, L \rightarrow ab|cN|Ml|\epsilon, M \rightarrow a|cM, N \rightarrow abN\}$ and S is the start symbol. [2+5]7. Construct a CFG for the language $L = a^n b^{2n}$, n > 0 and use this grammar to generate the [5+2]string aabbbb. Also construct the parse tree. 8. Design a Turing Machine (TM) which accepts the following $L = \{W \in \{x, y, z\}^* : w \text{ has equal no. of } x's, y's \text{ and } z's\}$. Verify your design for the string [6] "#xyxyzz#". 9. Design a two tape Turing machine that acts as a binary adder. Assume both the strings are kept at first tape and separated by a semicolon and output is desired at the same tape. [7] 10. Explain Recursive and Recursively Enumerable Languages with suitable examples of [4] each language. 11. Define unrestricted grammar. Explain, how unrestricted grammar can be defined as super set of CFG and Regular Grammar? Explain the church-turing thesis. [2+3+4] 12. Explain class P and NP problems with example. What is NP-complete problem? [5] # Examination Control Division 2072 Chaitra ✓ Attempt All questions. | Exam. | | Regular | | |-------------|--------|------------|--------| | Level | BE | Full Marks | 80 | | Programme | BCT | Pass Marks | 32 | | Year / Part | II / I | Time | 3 hrs. | ### Subject: - Theory of Computation (CT502) ✓ Candidates are required to give their answers in their own words as far as practicable. ✓ The figures in the margin indicate Full Marks. ✓ Assume suitable data if necessary. 1. a) Define Catesian Product. Use Mathematical Induction to show [1+3]1.1!+2.2!+...+n.n! = (n+1)!-1 for $n \ge 1$ Find the regular expression for the language $L = \{W \in \{0, 1\}^*: \text{ has } 0101 \text{ as substring.} \}$ [3] 2. Construct a DFA over {a,b} accepting strings having even number of 'a' and odd number of 'b'. [7] 3. Define DFA formally. State and prove closure properties of regular languages. [7] 4. Define pumping lemma for regular language. Use pumping lemma for regular language to show $L = \{a^n b a^n \text{ for } n = 0,1,2....\}$ is not regular. [2+5]5. Define the configuration of PDA. Design a PDA that accepts $L = \{a^{3n}b^n, n > 0\}$ and check the string aaaaaabb. [7] 6. Define context free grammer.Convert the given Context Free Grammar (CFG) into equivalent CNF [2+5] $S \rightarrow AB$ A→aAA e B→bBB | e, Here: e means empty symbol 7. a) Write a CFG for the regular expression R = 0*1(OUI)*[4] b) Use concept of closure property to prove that intersection of Context Free Languages is not Context Free. [3] 8. Design a Turing machine to compute the function f(n) = n + 1, where n be a binary string. Show the processing for the string 10111. [6] 9. Define Multitape Turing Machine. With the help of suitable example, explain how Universal Turing machine works. [2+5] 10. State Church Turing thesis. What is a recursive language? [2+2]11. Show that if a language L and its complement both are recursively enumerable, then L and its complement is recursive. Explain the halting problem. [4+5] 12. Write short notes on: [5] a) Computational Complexity b) NP hard and NP Complete Problems #### Examination Control Division 2071 Chaitra | Exam. | | Regular | | |-------------|------|------------|--------| | Level | BE | Full Marks | 80 | | Programme | BCT | Pass Marks | 32 | | Year / Part | 11/1 | Time | 3 hrs. | #### Subject: - Theory of Computation (CT502) - ✓ Candidates are required to give their answers in their own words as far as practicable. - ✓ Attempt All questions. - ✓ The figures in the margin indicate Full Marks. - ✓ Assume suitable data if necessary. - 1. Define countably infinite and uncountable sets with example. Use principle of mathematical induction to prove (5ⁿ-1) is divisible by 4 for all integers n ≥ 0. [3+4] - 2. Design a Deterministic Finite Automata (DFA) for the regular expression (a(ab)*b)*. Verify your design by taking one accepted and one rejected strings. [5+2] - 3. State pumping lemma for regular language. Use this lemma to prove language, $L = \{a^{n^2} : n \ge 0\}$ is not regular. [2+5] - 4. What are the differences between a DFA and a NFA? Convert the following NFA in to its equivalent DFA. [2+5] - 5. Construct CFG for language, $L(G) = \{a^m b^n : m, n > 0, m \ge n\}$. Use this grammar to generate string "aaab". And also draw the parse tree. [4+1+1] - 6. Convert following CFG to CNF [5] $$G = (V, \Sigma, R, S)$$, where $$V = \{S, A, B, a, b\}$$ $$\Sigma = \{a, b\}$$ $$R = \{S \rightarrow aAb \mid Ba \mid A, A \rightarrow SS \mid e, B \rightarrow e\}$$ - 7. Define the term ambiguity and inherent ambiguity in parse tree. For a CFG given by G = (V, Σ, R, S) with V = {S}, Σ = {a} and production rules R is defined as: [4] S → SS, - $S \rightarrow a$. Obtain the language L(G) generated by this grammar. - 8. Design a PDA that accepts language, $L = \{a^n b^{3n} : n \ge 1\}$. Test your design for string "abbb".[5+1] - 9. Write the differences between CFG and unrestricted grammar with example. Design a Turing machine that reads binary string and doubles the number represented by that string. A binary number is doubled if a '0' is added on the right end of the number. [3+5] - 10. Define head shifting and symbol writing Turing Machines. Design a Turing Machine (TM) which computes following function f(w) = ww^R, where w^R is the reverse of string and w ∈ {0,1}*. If your input string is #01#then TM should give the output string as #0110#. [3+6] - 11. Define class-P and class-NP problems with example. How do they relate to NP-complete problems? [5] - 12. What is an "Algorithm" according to Church-Turing Thesis? Why is it called thesis and not a theorem? Prove that if a language 'L' and its complement '\overline{L}' both are recursively enumerable, then L is recursive. [2+1+6] $$R_{U} \longrightarrow L \xrightarrow{\varepsilon + U} dR_{U} \in L_{d} \in$$ # Examination Control Division 2070 Chaitra | Exam. | Regular | | | |-------------|---------|------------|--------| | Level | BE | Full Marks | 80 | | Programme | ВСТ | Pass Marks | 32 | | Year / Part | II / I | Time | 3 hrs. | ### Subject: - Theory of Computation (CT502) - ✓ Candidates are required to give their answers in their own words as far as practicable. - ✓ Attempt <u>All</u> questions. - ✓ The figures in the margin indicate Full Marks. - ✓ Assume suitable data if necessary. - 1. Justify that "The complement of diagonal set is different from each row sets." with the help of diagonalization principle. Show that if 3n+2 is odd then n is odd by using proof by contradiction technique. [3+4] 2. Design a DFA that accepts the language $L = \{x \in \{1,1\}^*: x \text{ has an even number of 0's and an even number of 1's}\}$. Verify your design for at least two strings that are accepted by this DFA and 2 strings that are rejected. [5+2] 3. Show that for any Regular expression R, there is a NFA that accepts the same language represented by R. Construct a e-NFA for regular expression bb (a U b)*ab [3+3] 4. Use pumping lemma to prove that $L = \{a^n b^{2n} : n \ge 1\}$ is not regular. [4] 5. Consider the **regular grammar** $G = (V, \Sigma, R, S)$ where [4] - $V = \{S,A,B,a,b\}, \Sigma = \{a,b\}$ - $R = \{S \rightarrow abA / B / baB / e$ - $A \rightarrow bS / a$ - $B \rightarrow aS$ ì Construct a finite automaton M such that L(M) = L(G) 6. Write context free grammars (CFG) for the languages $L1 = \{a^m b^n c^n : m \ge 1, n \ge 1\}$ and $L2 = \{a^n b^n c^m : m \ge 1, n \ge 1\}$. Do you think that $L = (L1 \cap L2)$ is also context free? If not prove that the language thus obtained is not context free by using pumping lemma for context free language. [4+6] [6] - 7. Convert following CFG into CNF with explanation of each step. $G = (V, \Sigma, R, S)$, where $V = \{S, X, Y, Z, a, b, c\}$, - $\Sigma = \{a, b, c\}$ $R = \{S \rightarrow XYZ \mid XY \mid aZ, X \rightarrow abX \mid \varepsilon, Y \rightarrow bY \mid cZ \mid ab, Z \rightarrow aXZ\}$ 8. Design a PDA that accepts all the palindromes defined over $\{a, b\}^*$. Your design should accept strings like ε , a, b, aba, baba, babab etc. [5] 9. Define the term configuration of Turing Machine. Design a Turing machine which accepts the set of all palindromes over alphabets {0,1} [2+5] 10. Is Turing Machine a complete computer, support your answer in reference to different roles of Turing machines? Justify that unrestricted grammar can generate the language $L = \{a^n b^n c^n : n \ge 1\}$ [3+3] 11. Define Multiple tapes Turing machine. With reference to language they accept, compare Multiple tapes Turing machine with single tape Turing machine. [4] 12. "Turing machines is believed to be the ultimate calculating mechanism", elaborate with the help of Church-Turing thesis. How halting problems suffer the computational procedures? Explain with suitable example. [5+4] 13. With reference to Polynomial Time Reducibility, explain NP hard and NP- Complete Problems *** [5] # Examination Control Division 2068 Chaitra | Exam. | | Regular | | |-------------|------|------------|--------| | Level | BE | Full Marks | 80 | | Programme | BCT | Pass Marks | 32 | | Year / Part | II/I | Time | 3 hrs. | [7] [9] ### Subject: - Theory of Computation (CT 502) - ✓ Candidates are required to give their answers in their own words as far as practicable. - ✓ Attempt <u>All</u> questions. - ✓ The figures in the margin indicate Full Marks. - ✓ Assume suitable data if necessary. - 1. What are the differences between reflexive relation and reflexive closure? Use mathematical induction to show that $2^n < n!$ for any positive integer $n \ge 4$. [2+5] - 2. Design DFA that accepts the language $L = \{ W \in \{0, 1\}^* : W \text{ is the multiple of five.} \}$ Check your design for 1010. [7] - 3. Convert the following NDFA into equivalent DFA. [7] - 4. Show that $L = \{a^{2n} \ ba^n : n \ge 1\}$ is not regular by using Pumping Lemma for regular language. Test all possible cases. - 5. What is CFG? Design CFG for the language $L(G) = \{WW^R: W \in \{0, 1\}^*\}$. [2+5] - 6. Convert following CFG into CNF. $G = (V, \Sigma, R, S)$, where [7] - $V = {S, A, B, C, a, b, c},$ - $\Sigma = \{a, b, c\},\$ - $R = \{S \rightarrow ABA | abA | BC, A \rightarrow aA | \in, B \rightarrow baB | c, C \rightarrow aC\}.$ - 7. Design a Nondeterministic PDA to accept the language $L(G) = \{W \in \{0, 1\}^*: W \text{ has equal number of 0's and 1's}\}$. Check your design for 001110. [7] - 8. Design a turning machine that scans to left to find at least two a's. Machine should print "yes" if at least two a's are present otherwise it must print "no" and then halts. Hence test your design for Δ #b#ab#ba# to Δ #yes#ab#ba#. Where Δ and # represent left end and blank symbols respectively with $\Sigma = \{ \Delta, \#, a, b \}$. - 9. Explain about Unrestricted Grammar. Design a Turing Machine that accepts the language L = {aⁿbⁿ:n≥0}. Show all configuration of TM for aabb. [2+6] - 10. Define universal turning machine and explain its encoding technique in detail with suitable example. List undecidable problems about turning machine and grammar. [5+4] - 11. Explain class-P and class-NP, with examples. [5] *** # Examination Control Division 2068 Baishakh | Exam. | Regular / Back | | | |-------------|----------------|------------|-------| | Level | BE | Full Marks | 80 | | Programme | BCT | Pass Marks | 32 | | Year / Part | II / I | Time | 3 hrs | [3+4] ### Subject: - Theory of Computation - ✓ Candidates are required to give their answers in their own words as far as practicable. - ✓ Attempt All questions. - ✓ The figures in the margin indicate Full Marks. - ✓ Assume suitable data if necessary. - 1. Let N be a set of natural numbers and R be any relation defined as $R = \{(a, b): a \le b\}$. Now test whether R is an equivalence relation or not. Prove that the function $f(x) = x^5 + 5x^3 + 16x + 5$ cannot have more than one real root by using proof by contradiction technique. - 2. How finite automata are useful in various fields? Design a DFA that accepts the language given by $(M) = \{w \in \{0, 1\}^*: w \text{ does not contain four consecutive 0's}\}$. Hence test your design for 01010001. - 3. Minimize the following DFA (Draw initial diagram first). Specify performed operations in each step. [5] | δ/Σ | 0 | 1 | |-----------------------|----------------|-------| | $\rightarrow q_0$ | q_1 | q_2 | | *q1 | q_1 | q_3 | | *q2 | q_2 | q_2 | | *q ₃ | q ₅ | q_2 | | *q ₄ | q ₄ | q_2 | | *q ₅ | q_4 | q_2 | | q ₆ | q_5 | q_6 | | \mathbf{q}_7 | q ₅ | q_6 | - 4. Check whether $L = \{a^{n!}: n \ge 0\}$ is regular or not by using Pumping Lemma for regular language. [5] - 5. State closure properties of regular language and explain diagrams. [5] - 6. What is ambigious grammar? Write Context Free Grammar for the language given by L = {w∈{(,)}*}: each string in w has balanced parentheses}. Use same to derive leftmost and rightmost derivations for (()) (). Hence also draw parse tree. [1+2+4+1] - 7. What are the importance of CNF? Convert following CFG into CNF with explanation of each steps. [1+6] $$G = (V, \Sigma, R, S)$$, where $V = \{S, A, B, a, b\}$ $\Sigma = \{a, b\}$ $R = \{S\rightarrow bA/Ba/AaA, A\rightarrow S/e, B\rightarrow aB/ab\}$ - 8. Design a Non deterministic PDA for the language given by $L(M) = \{a^n b^n : n > 0\}$. Hence explain how it processes strings like aabb? [4+2] - 9. What is Turing-decidable language? Design a Turing machine that recognizes the language given by $L = \{a^nb^nc^n : n \ge 0\}$. Hence test your design for #aabbcc. [1+5+2] - 10. List three criteria that should be satisfied by a Turing machine. How unrestricted grammar differ from context free grammar? Design a Turing machine that recognizes the strings of matched parenthesis. [2+2+5] - 11. State and explain halting problem with suitable example. Why Church's Turing thesis can not be a theorem? List unsolvable problems about grammar? [5+2+2] - 12. State computational complexity theory. Explain class NP with suitable example. [1+4] ***